
1

Scalable Discovery of Hybrid Process Models in
a Cloud Computing Environment

Long Cheng, Boudewijn F. van Dongen and Wil M.P. van der Aalst Senior Member, IEEE

Abstract—Process descriptions are used to create products and deliver services. To lead better processes and services, the first step
is to learn a process model. Process discovery is such a technique which can automatically extract process models from event logs.
Although various discovery techniques have been proposed, they focus on either constructing formal models which are very powerful
but complex, or creating informal models which are intuitive but lack semantics. In this work, we introduce a novel method that returns
hybrid process models to bridge this gap. Moreover, to cope with today’s big event logs, we propose an efficient method, called f -HMD,
aims at scalable hybrid model discovery in a cloud computing environment. We present the detailed implementation of our approach
over the Spark framework, and our experimental results demonstrate that the proposed method is efficient and scalable.
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1 INTRODUCTION

E Vent data collected by modern information systems
can be used to extract non-trivial knowledge and

interesting insights using process mining techniques [1].
Specifically, process discovery, as one of the core tasks
in process mining, can automatically extract a process
model from a given event log and such a model can
be used to create products and deliver services [2].
Examples include, but are not limited to the domains
of telecom and insurance [3], [4].

Up to now, various discovery approaches have been
proposed in the process mining domain. According to
their discovered models, all the techniques can be di-
vided into two main categories: (1) formal models, which
explicitly and unambiguously specify all possible order-
ings of behavior. This model can be acquired by various
discovery algorithms such as the Inductive Miner [5];
and (2) informal models, which provide insights using
diagrams that have no formal semantics and can not be
used to reason about behavioral properties.

Generally, formal models explicitly offer guidance for
processes, which undoubtedly can provide value for
process execution. Regardless, they are typically inclined
to enforce guidelines [6], which is inflexible in terms of
covering all the possible variability. Moreover, this kind
of models has strong semantics that govern the overall
interplay of the actions and objects of a process. This
makes discovery challenging, and the resulting models
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could be also complex and hard to understand for
non-professional users. In comparison, informal models
allow users to describe a process through simple “boxes
and arcs”, which makes the discovery process much
easier and discovered models more intuitive. However,
informal models do not have clear semantics which are
actually important for operational processes in practice.

Considering the advantages of the two models above,
it makes sense to try and combine the best of both worlds
in the form of a hybrid process model. Such models
only formalize the parts that are clear and supported
by the data. Things that are less clear or not supported
by enough evidence, result in informal annotations that
are still useful for users. However, with the spectacular
growth of event data, it will be very challenging to
discover such a hybrid model in a scalable way.

To handle the problem, efficient hybrid model discov-
ery over cloud-based platforms such as MapReduce [7]
and Spark [8] becomes desirable. The reason is that these
platforms can efficiently extend the amount of available
computing resources to provide a straightfoward scale-
out capability [9]. Moreover, these platforms have inte-
grated parallelization, fault tolerance and load balancing
in a simple programming framework, and thus allow
their implementations for a easy deployment in cloud.

In this paper, we focus on efficient hybrid process
model discovery in a cloud computing environment. To
achieve this goal, we propose an approach, called f -
HMD (f ilter-based Hybrid process Model Discovery).
On a reference cloud-based implementation, we exper-
imental demonstrate the effectiveness and efficiency of
our method. The main contributions of this paper can be
summarized as follows:
• We introduce a hybrid process model and propose

a method (HMD) to discover such a model over big
event logs in a cloud computing environment.

• We analyze the performance issues of HMD and
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propose two strategies to speed up its discov-
ery process. Specifically, we incorporate two light-
weight filters in HMD (i.e., 2f -HMD) to reduce its
computation workloads.

• We present the detailed implementation of our ap-
proach over the Spark framework [8]. As filtering
may change the final output, we discuss about the
safety of our filters and theoretically provide the safe
ranges for implementation parameters.

• We conduct a detailed experimental evaluation of
our approach and the results demonstrate our ap-
proach is efficient and scalable. Specifically, it can
process 2.52 million traces having about 100 million
events in about 1 minute over 16 nodes (64 cores).

The remainder of this paper is organized as follows.
Section 2 gives a brief introduction about related con-
cepts in process discovery. Section 3 introduces the de-
tailed design of our approach. Section 4 presents our
implementation in details. We report the experimental
results in Section 5 and discuss the related work in
Section 6. We finally conclude this paper in Section 7.

2 PRELIMINARIES

In this section, we briefly describe some of the basic con-
cepts in process discovery. For more formal definitions
and examples, we refer to the book [1].

2.1 Event Log

An event log is a collection of traces (process instances),
where every trace is a temporally ordered sequence
of events, and each event is represented by a set of
attribute values (e.g., name, resource and timestamp,
etc.). For example, Figure 1(a) shows an event log, which
is composed of six distinct traces. Moreover, in each
trace, each event is represented by its activity name.
Other attributes such as time, resource, etc. have been
abstracted away. In total, the log contains 5×4+4×2 = 28
events, and the number of unique activities is 6. For
this condition, the log is also referred to as an activity
log, which is an abstraction of the event logs as found
in practice [1]. In the remainder of this paper, without
sacrificing generality, we focus on discovering a hybrid
model from such an activity log.

2.2 DFG

An informal process model is always represented in
the form of a directly-follows graph (DFG), which can be
derived from a log and describes what activities follow
one another directly, and with which activities a trace
starts or ends. In a DFG, there is an arc from an activity
a to an activity b if a is followed directly by b, and the
weight of the arc denotes how often that happened. In
practice, based on either domain knowledge or statis-
tical information (e.g., frequency), some arcs could be
removed from a DFG.
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Fig. 1: An event log and informal model (we ignore the
initial and end notations in the model for simplification).
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Fig. 2: An example of hybrid process model.

Because a DFG can represent processes in a direct,
simple and visual way, it has become the mainstream
model in current process mining products. Commercial
process mining tools such as Disco [10], Celonis [11],
ProcessGold [12] and Minit [13] often generate informal
models based on such DFGs, and most of them produce
DFGs where infrequent activities and arcs are removed
using sliders. As DFGs do not contain any execution
semantics and have difficulties dealing with concurrency,
we consider DFGs only as an intermediate result, not
suitable to show the real process logic. In this paper, we
construct a DFG from an event log without removing any
of the discovered arcs, and show that this can be done
in a parallel manner in a cloud computing environment.

2.3 Petri net
A formal process model can be modeled in terms of Petri
nets [14], using three types of elements: places, transitions,
and arcs. We have incorporated an uncompleted Petri net
in a hybrid model as demonstrated in Figure 2. There,
each activity represents a transition, each circle repre-
sents a place, and places and transitions are connected
by arcs (having purple/gray color).

Compared to an informal model, a formal one can
provide more explicit information on the possible pro-
cess executions. For instance, we only know that the
activities {b, c, e} follow a in some traces from the DFG
in Figure 1(b), but it remains unclear what can happen
after a in a process. In contrast, using semantics from the
Petri net as shown in Figure 2, we know that once the
transition a is fired, two tokens will be produced: one
for each output place. After a either e or both b and c
happen. The ordering of b and c is not fixed.

2.4 BPMN
Business Process Model and Notation (BPMN) is a rich
language that provides modelers with a large collection
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Fig. 3: Some reduction rules and the final hybrid model returned by our approach.

of object types to represent various aspects of a busi-
ness process, including the control-flow, data, resources
and exceptions [15]. Compared to Petri nets, BPMN is
specifically tailored to modeling business processes at a
conceptual level, meaning that they are often used for
communication between stakeholders in the processes.
Therefore, we will visualize our final models using
BPMN, and restrict ourselves to a small subset of BPMN
having clear execution semantics.

To transform a process model from Petri nets to
BPMN, a typical way is using logical gateways to replace
the places. There are three rules for this transformation:
(1) every transition/activity with input places has an
and-join gateway connected with precise arcs; (2) every
transition with output places has an and-split gateway
connected with precise arcs; and (3) all places are re-
placed by xor-gateways. Moreover, six reduction rules
can be applied to simplify the replaced model by reduc-
ing its gateways, and Figure 3(a) shows three of them:
(1) a gateway can be removed if it has only one input a
and one output b; (2) two sets of fully connected AND
gateways can be simplified when there are only inputs
for one set and outputs for the other; and (3) for the case
that a set of AND gateways are fully connected with a set
of XOR gateways, if there is only one input for each AND
and only one output for each XOR, then the gateways
can be simplified. These three rules also work when
replacing the AND gateways with XOR while replacing
the XOR gateways with AND (i.e., another three rules).
After these replacement and simplification operations,
the model in Figure 1(b) can be transformed into the
hybrid model as demonstrated in Figure 3(b).

3 OUR APPROACH

In this section, we present the details of our approach
and show how we realize the approach in a cloud
computing enviroment (e.g., over Spark [8]).

3.1 Overview
As we have described, end-users like to use informal
process models, and it is unlikely that this will change.
Moreover, Petri nets (and the like) are perceived as being
too complex in terms of discovering and understanding.
Futhermore, current mining algorithms are often not

sure about some parts of a model, and forcing explicit se-
mantics only provides fake certainty [16]. In comparison,
informal models are simple, but lack execution seman-
tics. In fact, parts of an informal model can actually be
enhanced by formalizing the parts that can be captured
in precise modeling constructs with good confidence.

Our discovery technique only inserts formal depen-
dencies between activities if they have a good qual-
ity, i.e., there is sufficient evidence in the event log
to support such formalization. By replacing informal
dependencies with formal ones whenever possible, we
aim to construct a hybrid process model to bridge the
gap between the two different models and consequently
combine their advantages in a single model, i.e., a hybrid
process model. Generally, our model discovery process
can be divided into the following three steps:

- Step 1: construct a DFG from an event log.
- Step 2: discover places in the DFG by checking the

feasibility of such places based on the evidence in
the event log in a exhaustive way.

- Step 3: replace the discovered places with logical
gateways from BPMN and simplify the gateways
by applying reduction rules.

As an example, for the event log in Figure 1(a), we
can first get a DFG as shown in Figure 1(b). Then, we
examine all the possible places over the input log and
extend the DFG model with discovered places. As a
result, we get a model as illustrated in Figure 2. Finally,
we replace the places and output a hybrid model as
shown in Figure 3(b). Compared to a fuzzy model (i.e.,
DFG), all the precise part (arcs and gateways) in our
hybrid model will be marked in a configurable color
(e.g., purple in our case) to highlight the parts that have
formal semantics. In the meantime, the rest parts (arcs)
are kept as normal, indicating that there is no confident
semantics between the responsible activities.

3.2 Hybrid Model Discovery
Based on the above steps, Algorithm 1 describes the
implementation of our hybrid model discovery (HMD).

3.2.1 DFG Discovery
All the traces in an input log L can be easily partitioned
in a distributed enviroment. For example, in a cloud with
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HDFS [17], the partitioning can be done automatically
when uploading the log. Specifically, the number of
traces of each partition can be balanced, by explicitly
assigning the number of partitions when reading the log
(using Spark). It should be noticed that the partitioning
is done in trace-level and thus all the directly-follows
relationships are well maintained.

On the above basis, a directly-follows graph can then
be computed in a single pass over the event log in
parallel. As shown in Algorithm 1 lines 1-7, for each
sublog Lk at each node1, we examine the directly-follows
relationships for all the neighbored activities (line 4) and
record them in a local matrix F k (i.e., line 5, increasing
the counter number by 1). This statistics can be done in
parallel on all the computing nodes. This is because the
computing is done on each trace σ, and all the traces are
distributed and independent to each other. After that, all
the values in F k at each node k are aggregated based on
their indexes to construct a new matrix F . This matrix
represents all the directly-follows relationships of the log
(line 8). Namely, if Fx,y = 0, the activity ax is never
followed by the activity ay , otherwise, ax is followed by
ay at least once and thus we add an arc between the two
activities in the discovered DFG.

3.2.2 Place Discovery
Our target is to add feasible places between activities
for the discovered DFG to enhance its execution seman-
tics. To get such places, we use a generating-and-pruning
scheme, i.e., for an input DFG, we first generate all the
place candidates X , and then prune the ones that do
not meet standard Petri nets semantics. The details of
this process are presented in Algorithm 1 lines 9-28.

Candidate generating. For a DFG, a place could appear
between two or multiple activities including directly-
follows relations. Therefore, a place candidate Xj ∈ X
can be represented in the form of an arc cluster (A,B),
where A and B are activity sets. For generality, let B
follow A, and Xj appears between them. To quickly
get all such candidates, we first represent the DFG
using an adjacency list. Then, we construct an invert-
list based on all the possible combinations (and selec-
tions) of the neighbors of each vertex and treat each
combination as a vertex. Finally, we generate all the
candidates based on all the possible combinations of
neighbors of each vertex in the invert-list. An example
of such a processing is shown in Figure 4. There, the
DFG shown in Figure 4(a) can be represented as an
adjacency list {〈a|b, c, e〉, 〈g|b, c, e〉}, and the neighbors
of the two vertexes a and g are {b, c, e}. There are 7
different combinations for the three nodes, e.g., {b}, {b, c}
and {b, c, e} etc., therefore we can construct an invert
list shown as Figure 4(b), in which a and g are the
neighboring nodes. Followed by that, there are 3 possible
combinations for a and g, i.e., {a}, {g} and {a, g}, thus

1. We focus on describing our algorithm at a conceptual level only.
In this context, a node here refers a computing unit.

Algorithm 1 Hybrid Model Discovery (HMD)
DFG discovery:

1: for Lk ∈ L at each node k parallel do
2: Initialize a 2D matrix F k

3: for σ ∈ Lk do
4: ∀(ax, ay) ∈ σ and ax ← ay ,
5: F kx,y+ = 1 // follows relation
6: end for
7: end for
8: Combine all F k to construct a DFG

Place discovery:
9: Generate all the place candidates X based on the

discovered DFG.
10: for Lk ∈ L at each node k parallel do
11: for Xj ∈ X,σ ∈ Lk do
12: if !(A ∩ σ = ∅ ∧B ∩ σ = ∅) then
13: if σ : Rule 3 then // Rule 3
14: Dkj = 1
15: end if
16: end if
17: end for
18: end for
19: for Xj ∈ X do
20: if f(

∑
kDkj) < t3 then

21: X = X −Xj // pruning
22: end if
23: end for

Post-processing:
24: Partition DFG into g01 and g2 using X
25: Add places to g01 and replace them with logical

gateways
26: while gn1 6= gn−11 do
27: gn1 = R(gn−11 ) // simplifying
28: end while
29: HM = (gn1 , g2)
30: Visualize HM

finally we have 21 place candidates, which are listed in
Figure 4(c).

Candidate pruning. We prune the generated place can-
didates based on the semantics of Petri nets. For a
candidate Xj = (A,B), let T is a subset of L, and there
is T = L \ {σ | A ∩ σ = ∅ ∧ B ∩ σ = ∅, ∀σ ∈ L}.
Namely, we guarantee that for each trace σ in T , there
exists at least one activity in A or B that appears in
the trace. Here we look for places having input set A
(transitions producing a token for the place) and output
set B (transitions consuming a token for the place).
Using standard Petri nets semantics we need to check
that: (1) we never consume a token from an empty place,
and (2) at the end the place is empty. Namely, for each
trace, the frequencies of transitions in A should be no less
than the transitions in B at any time point. Meanwhile,
the frequencies of transitions in A should match the
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Fig. 4: An example of candidate generation process for
a given DFG.

frequencies of transitions in B at the end of the trace.
Let σ(i) denote the first i elements of a trace σ, |σ|

be the length of the trace, #vU be the frequency of the
transitions in U appearing in v. Then, the above two rules
can be formalized as: ∀σ ∈ T , there is{

#σ(i)A ≥ #σ(i)B, ∀i ∈ [1, |σ|)
#σA = #σB

(Rule 3)

If A and B satisfy the above rule, then a place with in-
put transitions A and output transitions B will be added
in the DFG. In our previous example in Figure 1(b), the
case A = {a} and B = {b, e} satisfies above Rule 3, thus
there is a place between them as shown in Figure 2.

Noise or infrequent behavior could occur in an event
log, and such kind of data would greatly impact our
pruning processing if we follow Rule 3 in a very strict
way (i.e., ∀σ ∈ T ). To handle this problem, we adopt
an approximation for Rule 3. Specifically, we use a
parameter γ to represent the approximation:

γ =
#σ, σ : Rule 3

|T |
(Approx. 3)

It means that for a place candidate (A,B), we check
whether the majority of the traces in T meet the Rule
3. In our tests, we set a threshold t3 = 90% as default,
namely there will be a place between A and B if and
only if γ ≥ t3. This ensures that the large majority of
traces indeed complies with the place to be added.

Based on above analysis, in our algorithm, we examine
each candidate Xj over the traces Lk on each node k in
parallel (lines 10-18). The collected statistical information
Dkj of Rule 3 for each candidate Xj on each node will
be combined by an aggregation and the non-matched
candidates will be removed if they do not meet the
configured threshold t3 (lines 19-23).

3.2.3 Post-processing
We can partition the discovered DFG into a precise part
g1 and a fuzzy part g2 once we get the final candidates X
(line 24). After adding the discovered places in g1, based
on the replacement strategies described in Section 2, we
can then replace the places with logical gateways (line
25). Following by that, we repeatedly apply the simpli-
fication rules to the graph g1 until the graph does not
change any more (lines 26-28), and the final output will

be constructed by the refined graph g1 and g2 (lines 29-
30). Because a (hybrid) business process model including
activities and discovered places (in the form of a graph)
is typically very small, the whole post-processing will be
very lightweight. Therefore, we conduct all the opera-
tions (i.e., replacement, simplification and visualization)
on a single computing node (e.g., the master node in
Spark). In fact, the post-processing for the two datasets
we have used in our experiments in Section 5 can be
always done in less than 150 milliseconds.

3.3 The f -HMD Algorithm
3.3.1 Performance Issues
In above HMD algorithm, the DFG discovery can be
done by a simple statistics-based job, which would be
light-weight in a distributed environment. Meanwhile,
the candidate generation in the second step and post-
processing in the third step can be also done in a quick
way as the graph is typically small. Clearly, the process
of candidate pruning in our algorithm is the most time
consuming one, as we need to check all the candidates
over all the traces and all their prefixes based on Rule 3.

The check operations would make the place discovery
costly, especially when the number of candidates is
large. In fact, this could happen even when a DFG is
small, because the number could increase sharply with
increasing either the size of the graph or the connections
between vertexes (activities). For example, for the latest
BPI Challange dataset as we used in our later evaluations
(the Application log [18]), the number of generated
candidates is 176798. If we have 1 million traces, then
the number of trace-level examination will be around 176
billions. This will bring in great performance challenges,
even when the number of computing nodes is large.

To discover a hybrid model in a reasonable time in
the presence of large event logs, we propose a more
efficient approach, f ilter-based Hybrid process Model
Discovery (f -HMD), by incorporating effective strategies
into the HMD algorithm. Firstly, we identify model-
level constraints, to reduce the number of generated
place candidates, on the basis of our observation on
current methods in constructing process models. Then,
we employ data-level constraints from Rule 3 and use
them as light-weight filters, to prune large numbers of
place candidates before the place discovery process over
Rule 3. Both strategies are able to efficiently reduce the
computing workloads for HMD and consequently to
improve its overall performance.

3.3.2 Model-level Constraints
As described earlier, formal models can be discovered
by various process discovery algorithms. We identify
the model-level constraints from these approaches. Con-
sidering the amount of events in large logs as well as
the quality of discovered processes (e.g., soundness and
fitness), we have chosen the Inductive Miner [5] as our
reference. Besides the fact that the Inductive Miner is
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the state-of-the-art process discovery approach, other
techniques incline to produce models that are unable
to replay the log well, i.e., they either create erroneous
models or have excessive runtime during executions.

The main objective of Inductive Miner is to discover
a set of block-structured process models for any given
logs. The discovered model can be represented as a
process tree, which is a compact abstract representation
of a block-structured workflow net. The root in such a
tree leaves certain characteristics in the log and DFG,
and the leaves are labeled with activities and all other
nodes are labeled with operators [5]. The operations can
characterize the exclusive choice, parallel, sequence and
loop behaviors for activities of a log. For example, for
exclusive choice, each trace will be generated by one
child in the process tree. In fact, a workflow net is a
Petri net having a single start place and a single end
place, modeling the start and end state of a process.
Moreover, all nodes are on a path from start to end [19].
In such scenarios, a block-structured workflow net is a
hierarchical workflow net that can be divided recursively
into parts having single entry and exit points2.

Consider the discovery process in our approach, each
precise part of a hybrid model is actually able to be
represented as a block. Unlike the Inductive Miner, we
will only need to consider the potential places between
a single activity and multiple activities or reversed. This
means that in our candidate generation, we only need
to consider a candidate (A,B) with the cases that either
the size of A or B is 1 (i.e., the number of contained
transitions). If there is |A| = 1, then |B| can be an
arbitrary value which is not greater than the number
of the neighboring nodes of A. If the value of |B| is
large, although the discovered place could meet Rule 3,
the discovered hybrid model will be not realistic, since
the number of splits (or joins) in a single block will be
large. Therefore, we restrict the maximum value of |A|
(or |B|) to 3 in our implementations. This configuration
will efficiently reduce the number of generated candi-
dates (especially for complex DFGs). By exploiting this
constraint, the number of generated candidates for the
DFG in Figure 4 will be 15 rather than 21.

3.4 Data-level Constraints

We are trying to speed up our candidate pruning process
by using light-weight filters at the trace and log levels,
based on the data constraints implied in Rule 3.

Trace-level filter. Based on the execution semantics of Petri
nets, we can deduce that if the activity sets A and B meet
the requirement of Rule 3, it could also satisfy: ∀σ ∈ T ,
there is

#σA = #σB (Rule 2)

2. Note that block-structured process models can be seen as subset
of workflow nets. However, we will be able to discover models
that do not need to be block-structured, but still satisfy predefined
requirements.

The frequencies of transitions in A match the frequencies
of transitions in B, if at the end of each trace the place
is empty. Similar to Rule 3, we use a parameter β to
represent the approximation in Rule 2 and to check
whether a candidate satisfies Rule 2 in most of the traces:

β =
#σ, σ : Rule 2

|T |
(Approx. 2)

For a given place candidate, computing the pruning
process using Rule 2 will be much more lightweight than
Rule 3, as Rule 2 does not require any prefix checking
operations. We will use Rule 2 as a filter in HMD, i.e.,
if a candidate does not meet Rule 2, then the candidate
will be pruned directly, so as to reduce the computation
workloads for Rule 3. In the following, we refer this
algorithm as 1f -HMD.

Log-level filter. Let #LA (or #LB) be the frequency of
transitions in A (or B) appearing in the log L, similar to
above, for a place candidate meeting Rule 2 and 3, the
following condition could also happen:

#LA = #LB (Rule 1)

Namely, the overall sum of the frequencies of transitions
in A matches the overall sum of the frequencies of tran-
sitions in B in a log level. Similarly, we use a parameter
α defined as below to represent the approximation3.

α =
|#LA−#LB|
#LA+#LB

(Approx. 1)

We will use Rule 1 as a filter to reduce the computation
workloads for Rule 2, therefore we can set a threshold
t1 here, and remove a candidate if α ≥ t1. We call this
algorithm as 2f -HMD as it contains two filters.

3.5 Discussion
In terms of discovery performance in the presence
of large event logs, using model-level constraints, our
approach can efficiently reduce the number of place
candidates in the step of candidate generation. In the
meantime, using data-level constraints, we can use light-
weight filters to pruning non-interesting candidates, i.e.,
if one of the two filters works, then the tested candidate
will not go to the next phase. We need additional jobs to
implement Rule 1 and Rule 2 in 2f -HMD. However, as
we will shown in our later section, most place candidates
can be excluded quickly in our 2f -HMD algorithm. It
can obviously improve the performance of the HMD
algorithm, without impacting the quality of discovered
models, even in the cases that the values of t1 are not
theoretically safe (i.e., over-filtering could occur).

In fact, we can further speed up our model discovery
by setting reasonable constraints on DFGs. For example,
we can remove some arcs representing infrequent be-
havior in a log. These behavior occurs less frequent than

3. We can also use other mathematical expressions to describe the
approximation, but this will not impact our approach in terms of im-
plementations and bound analysis in the following section in principle.
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“normal” behavior (e.g., the exceptional cases) and could
be not interesting in some use cases. This kind of pro-
cessing can simplify DFGs and consequently reduce the
number of generated place candidates. Regardless, all
related strategies can be treated as a pre-processing for
our approach and a detailed discussion on such aspects
will be outside the scope of this work. In our following
implementation, we focus on discovering places over a
DFG without removing any arcs from it.

4 CLOUD-BASED IMPLEMENTATION

In this section, we present a detailed implementation
of the proposed 2f -HMD algorithm over Spark [8]. To
cater to different DFGs in different process mining tools,
we have separated the DFG discovery process from our
HDM-based approaches and run it as an independent
job. Namely, the implementations of the three algorithms
are composed of two separate jobs. The source code we
have used in this section and our evaluations is available
at https://github.com/longcheng11/HybridM.

4.1 An overview of Spark
Spark [8] is a parallel computing platform very well
suited to cloud computing. The reason is that it is elastic
in terms of both storage (through the use of HDFS) and
computation. This is in contrast with the conventional
data systems which have to be carefully tuned to the
specification of each node. In such scenarios, our imple-
mentation will be able to be easily deployed in a cloud
to handle large event logs. Actually, the provided jar file
at the link above is ready for cloud deployments.

We have picked Spark as the underlying framework
rather than MapReduce [7], because Spark is becoming
more and more popular, and it will largely replace
MapReduce as the go-to model for big data analytics,
as reported by Cloud Computing Technology Trends [9].
Another reason is that various data-parallel applications
based on MapReduce can be expressed and executed
efficiently using Spark. Here, we briefly introduce the
fundamental data structure of Spark - the Resilient Dis-
tributed Datasets (RDD)

RDD is a central abstraction for Spark. It is a fault-
tolerant and parallel data structure which lets users be
able to store data in memory and control its partition-
ing [9]. Spark provides two types of parallel operations
on RDDs [8]: transformations and actions. Transforma-
tions, including operations like map and filter, create a
new RDD from the existing one. Actions, such as reduce
and collect, conduct computations on an RDD and return
the result to the driver program. Computation in Spark
is expressed as functional transformations. Note that a
RDD cannot be modified, however, a new RDD can be
constructed by transforming an existing RDD.

4.2 Parallel Implementation
As described previously, the candidate generation and
post-processing in our approach can be done on a single

Algorithm 2 DFG discovery in 2f -HMD
The input log is read from underlying HDFS system,
results in a RDD containing strings

1: val activities = log.mapPartitions(parse trace)
2: val pairs = activities.mapPartitions(iter ⇒

iter.flatMap(generate pairs))
3: val stat = pairs.reduceByKey( + ).collect()
4: Iteration over stat to extract directly-follows relations

in the form of (act1, iterable(act2, int))
5: Save directly-follows relations on HDFS

node (i.e., master). Here, in terms of parallel implementa-
tions, we focus on the detailed implementations of DFG
discovery and candidate pruning.

4.2.1 DFG Discovery
The discovery process can be implemented in a very
simple way using Spark as shown in Algorithm 2. There,
we also record the frequency for each directly-follows
relationship. First, the activity log is placed in HDFS and
read as a RDD. In this process, the log is automatically
partitioned and each partition in the RDD is in the form
of strings, where each string is a trace.

Following by that, we parse each trace into activities in
the form of iterable[act] by a map operation. This opera-
tion can be done in parallel at each partition of the RDD
by using mapPartitions (line 1). The computation of
the directly-follows relations in each trace can be done
by scanning each iterable[act] (i.e., parsed trace) and on
that basis to generate pairs in the form of 〈(act1, act2), 1〉
for all neighboring activities. This can be also done in
parallel as shown as line 2 in the algorithm. After that,
we can aggregate all the pairs and calculate their global
appearing frequency using aggregation functions. Here,
we use the action reduceByKey (line 3). Namely, all
the generated pairs on each partition will be first aggre-
gated locally, and then redistributed over the computing
systems based on their keys (act1, act2), and finally
aggregated again locally. This is more efficient than the
action groupBy in Spark, especially when the log is
large. The reason is that the first local aggregation can
highly reduce the number of message pairs transferred
over networks in the shuffling phase.

The aggregated results on each partition will be col-
lected by the master node to construct the directly-
follows graph. This can be done aggregating all the pairs
in the form of 〈act1, iterable(act2, int)〉 by an iteration
(line 4). This graph represents an abstraction of the whole
log and will be used as an input to generate place
candidates using the approach described in Section 3.2.2.

4.2.2 Candidate pruning

Parallelism. In the process of candidate pruning, as de-
scribed in Section 3.2, we have to check all the place
candidates over all the traces when applying Rule 2 and
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Rule 3. The input log has been automatically partitioned
when read from the HDFS system, therefore we will
have two options on the parallel implementation. (1)
Pipeline-based parallelism: all the candidates X are also
(equal-size) partitioned, and each of the subsets are
examined by each sublog (partition) in a pipeline way,
and we can get the final results of the candidates in the
subset when it passes the whole log. (2) Broadcast-based
parallelism: which has implied in our Algorithm 1, i.e.,
all the candidates are broadcasted to all the sublogs and
then the local checking results are merged to formulate
the final outputs.

Theoretically, the first parallel approach will be more
efficient than the second one, in terms of implemen-
tations using high performance computing (HPC) pro-
gramming languages such as X10 [20], [21] and MPI [22].
This is because we can track the location of each subset
of X and can manually assign them to a specified desti-
nation (i.e., sublog partition) according to our require-
ments. Moreover, we can let network communication
and local computing work in a synchronous way, so
as to extensively use the available system resources and
consequently achieve a high performance. However, this
is not straightforward for Spark (or a general cloud-
based platform), since, unlike implementations using
thread-level parallelism in HPC, Spark follows the data-
flow model [23]. Namely, it does not allow fine-grained
controls on data movement and computing.

A solution for the pipeline implementation is that
we can first mark the candidates in each partition of
the RDD of X with its partition index in Spark. For
example, a candidate (A,B) in the partition 0 will be
marked as (0, (A,B)). Then, we know that this candidate
is in partition 0. In this case, we manually increase the
index value by one after a candidate has been checked
by a sublog and then shuffle all the candidates using
partitionBy when all the local computing is done. This
way each candidate can then go through the whole
log. This approach would be efficient as well, regard-
less, the whole implementation needs to be done with
multiple phases (i.e., the number of partitions of the
input log), which could bring in obvious overheads
in terms of communications and computation, due to
the construction of new RDDs. Compared to this, the
broadcast-based parallelism is easier to implement and
will be more efficient. In fact, as we will show in our
later evaluations, after the application of Rule 1, the
number of generated candidates is much smaller than
the underlying traces. Therefore, the parallelism problem
can be mapped to a typical small-large case in cloud
computing environments, and broadcasting has been
shown to be very efficient way in such scenarios [24].

Implementation. Follow the above analysis, the detailed
implementation of our candidate pruning is given in
Algorithm 3. We first compute the frequency of each
activity in the event log with two steps (lines 1-2): (1)
generate pairs in the form of 〈act, 1〉 by going through

Algorithm 3 Candidate pruning in 2f -HMD
All the place candidates X have been generated on
the master node

1: val pairs = activities.mapPartitions(iter ⇒
iter.flatMap(generate pairs1))

2: val stat1 = pairs.reduceByKey( + ).collectAsMap()
3: Calculate the value α of each candidate using stat1
4: Prune the candidates in X if α > t1

5: val BX = sc.broadcast(X)
6: val stat2 = activities.mapPartitions(iter ⇒ {
7: for (trace ← iter) yield stat map}).mapPartitions(
8: iter ⇒ { val LX = BX.value
9: 2D Array = Check2(LX, iter) })

10: Collect stat2 and calculate β of each candidate
11: Prune the candidates in X if β < t2

12: val BX = sc.broadcast(X)
13: Calculate stat3 based on replacing Check2 with

Check3 by considering prefix checking in stat2
14: Collect stat3 and calculate γ of each candidate
15: Prune the candidates in X if γ < t3

all the activities using a map function, and (2) sum
the number that an activity appears in all the sublog
partitions by a reduce function. As the number of unique
activities is very small and the number of candidates
could be relatively large, we can collect the statistics
information on the master node and then perform Rule
1. In this case, a candidate will go to the second step if
the value of its α is not greater than the parameter t1.

As shown in lines 5-11 in the algorithm, to implement
the second filter, we first broadcast all the candidates
to all the partitions (line 5). Then, in each partition we
perform two operations: (1) create a map to record the
activity frequency for each trace (line 7), and (2) check
each candidate using Rule 2 (line 9). The checked results
on each partition are recorded by pairs in the form of
〈id, boolean〉, where the id is the index of a candidate
in X and the boolean records whether the candidate
meets Rule 2 for a given trace. The index will be used
to identify candidates after merging all the results from
each partition. In this process, if none of the activities in
A and B appears in a trace, then the checked results are
not recorded. All the results will be collected finally to
prune the candidates which do not meet Rule 2 (lines
10-11).

The parallel implementation of Rule 3 is very similar
to Rule 2 (lines 12-15). The main difference is that each
candidate on each partition has an additional prefix
checking as described previously. The entire pruning
process terminates when all local checked results are
merged and compared with the threshold t3. Based on
the output places, the final hybrid process model can be
then constructed as described in Section 3.2.
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4.3 Safe Filtering Configuration

In our above implementation, we use a threshold t2 in
Rule 2 to pre-prune place candidates for Rule 3. As Rule
2 is implied by Rule 3, we should set t2 to a lower value
t2 ≤ t3. If t2 ≤ t3, then the filtering using Rule 2 does
not influence the result, i.e., filtering is safe.

For the threshold t1 in the Rule 1, obviously, the
smaller the value t1 is, the stronger the filter of Rule
1 will be. Therefore, to improve our performance, we
need to set t1 as small as possible. However, t1 can not
be set to a very small value (e.g., 0), otherwise Rule 1 will
become a sufficient, but not necessary condition for Rule
2 and over-filtering will occur. To avoid this, we must
guarantee that: for a given candidate (A,B), if β ≥ t2,
then it should hold α ≤ t1. Namely, to use Rule 1 as a
filter in a safe way, we must set the threshold t1 to value
which is not smaller than the upper bound value of α.

Theorem 1: Rule 1 is a safe filter for Rule 2, if the
threshold t1 is set such that:

t1 ≥
(1− t2)M

2t2 + (1− t2)M
(1)

where, M is the maximal length of traces in a log.

Proof: Let a candidate (A,B) with A = {a1, a2, ..., an}
and B = {b1, b2, ..., bm}. For the trace set T defined in
Section 3.2.2, let the i-th trace Ti contain |Ti| activities,
and the number of appearances of the j-th transitions in
A (and B) be aij (and bij). Rule 1 is a necessary condition
for Rule 2, according to Rule 2, there are K = |T |β
traces meeting the condition #σA = #σB and |T |(1−β)
traces do not. Based on this, for the simplicity of our
mathematical presentation, we sort all the traces, and
keep that the first K traces satisfy #σA = #σB while
the rest do not. Then, we have:

#LA =

K∑
i=1

n∑
j=1

aij +

|T |∑
i=K+1

n∑
j=1

aij (2a)

#LB =

K∑
i=1

m∑
j=1

bij +

|T |∑
i=K+1

m∑
j=1

bij (2b)

n∑
j=1

aij =

m∑
j=1

bij , ∀i ∈ [1,K] (2c)

n∑
j=1

aij +

m∑
j=1

bij ≤ |Ti| (2d)

Based on the definition of α and Eq. (2a-2c), there is:

α =
|
∑|T |
i=K+1(

∑n
j=1 aij −

∑m
j=1 bij)|

2
∑K
i=1

∑n
j=1 aij +

∑|T |
i=K+1(

∑n
j=1 aij +

∑m
j=1 bij)

(3)
Obviously,

α ≤
∑|T |
i=K+1

∑n
j=1 aij

2
∑K
i=1

∑n
j=1 aij +

∑|T |
i=K+1

∑n
j=1 aij

= α1 (4)

We assume that the average frequency of activities in
A in a trace Ti (i ∈ [K + 1, |T |]) is y, from Eq. (4) we
have:

α1 =
(|T | −K)y

2
∑K
i=1

∑n
j=1 aij + (|T | −K)y

(5)

Moreover, assume that for the first K traces, the average
appearing time of the activities in A (also B) in a trace
Ti (i ∈ [1,K]) is x. Based on Eq. (5), there is:

α1 =
(|T | −K)y

2Kx+ (|T | −K)y
=

(1− β)y
2βx+ (1− β)y

(6)

According to our definitions, we have x ≥ 1, otherwise
there exists at least one trace Ti in T that A∩Ti = ∅∧B∩
Ti = ∅. Moreover, we have β ≥ t2, therefore, we have:

α1 ≤
(1− t2)y

2t2 + (1− t2)y
(7)

From Eq. 2(d), we have ∀i, y ≤ Max{|Ti|}. As T is
a subset of L, there is Max{|Ti|} ≤ Max{|Li|} = M .
Therefore, based on Eq. (4) and (7), we have Eq. (1). �

Remark: Based on Eq. (1), we can say that for a log with
the longest trace containing 10 activities, if we set t2 =
0.9, then we should set t1 to 0.36 to guarantee that Rule
1 can always safely filter the place candidates, regardless
of what the candidates and the underlying log look like.
Moreover, we can see that the larger M is, the larger the
value of t1 should be, i.e., the weaker the filter will be. In
term of pruning performance, it should be noticed that
Eq. (1) just gives the theoretically worst condition. As
we will show in our evaluation in Section 5, setting t1 to
a value which is smaller than the theoretical value, we
can still get the same places, with less time.

5 EVALUATION

In this section, we present an experimental evaluation of
our approaches.

5.1 Experimental Framework
We have implemented the HMD, 1f -HMD and 2f -HMD
algorithms using Scala over Spark [8].

Platform. We evaluate our approach over a cluster. Each
node we used has 4 CPU cores running at 2.80 GHz with
16GB of RAM. The operating system is Linux kernel ver-
sion 2.6.32-279 and the software stack consists of Spark
version 2.0.0, Hadoop version 2.7.3, Scala version 2.11.4
and Java version 1.7.0 25. As the computational infras-
tructure uses non-virtualised computational resources,
we believe that our testbed approximates commercial
offerings in terms of cloud computing [24], and thus can
characterize how our algorithms will behave in a cloud.
In particular, our test enviroment closely approximates
the Bare Metal servers in IBM Softlayer [25] and the
Cluster instances in Amazon EC2 [26].

Datasets. We run our performance tests over different
datasets based on real life logs taken from the Business
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Fig. 5: The two discovered hybrid process models for Log 2 with two different input sets of parameters.

Process Intelligence Challenge (BPIC) of the year 2017.
There are two event logs: (1) the application event log [18],
which contains 31,509 traces, the number of events is
1,202,267 and the maximum number of events in a trace
is 180; and (2) the offer event log [27], which contains
42,995 traces, the number of events is 193,849 and the
maximum number of events in a trace is 5. These two
logs represent a large and small as well as a complex
and simple case (in terms of DFG complexity), for hybrid
process model discovery. For simplicity, we refer the two
event logs as Log 1 and Log 2 respectively.

Setup. We set the following system parameters for
Spark: spark worker memory and spark executor memory
are set to 15GB and spark worker cores is to 4. There are
three parameters t1, t2 and t3 in our implementation, i.e.,
the thresholds for Rule 1, 2 and 3 respectively. Consider
the safety and performance of the two filters in our
f -HMD algorithms, as a default we set t2 to a value
equal to t3, and t1 to the value as we described in our
theoretical analysis in Section 4.3. We will vary the value
of t3 and use 90% as the default.

In all our experiments, we read input files from the
HDFS system [17] and output discovered hybrid process
models (in dot file format) to the disk of the master
node. We measure runtime as the elapsed time from
job submission to the job being reported as finished.
As a default, we implemented our tests using 9 nodes,
including one master node and 8 worker nodes (i.e., 32
cores).

5.2 Experimental Results
In this subsection, we first present the discovered hybrid
models using our algorithms. Then, we report their
runtime performance and scalability.

5.2.1 Discovered Models
We have evaluated our approach over Log 1 and Log 2
with different input parameters. The discovered models
in dot (and PDF) format are included in the distribution
of our software. For simplicity, we only present the
discovered models for Log 2 here.

With two different parameter configurations (0, 1) and
(0.217, 0.9) for (t1, t2), the two discovered hybrid models

using the 2f -HMD algorithms for Log 2 are depicted
in Figure 5. It can be seen that our approach can in-
deed discover hybrid process models. These discovered
models highlight the unique feature of hybrid models:
they provide a mix of formal (highlighted by rectangle
blocks) and informal constructs. In both the hybrid
models, there are precise semantics between the activities
O_Create_Offer and O_Create. Namely, the latter
activity always follows the former one in underlying
business processes of Log 2. Additionally, we can see
that the discovered model with input parameter (0, 1)
is much simpler than the one with (0.217, 0.9), i.e.,
the left model has not formal gateways whereas the
right model has three gateways. The reason is that the
selectivity of places is very high when t2 equal to 1: the
discovered precise parts (models) should follow the Petri
net semantic in a strict way (i.e., without approximation),
and any possible abnormal behavior or noise in a trace
or any uncompleted traces (because the log is captured
in a certain period of time) will results in a potential
candidate being pruned by the rules. In comparison, the
approximation used in the configuration with (0.217, 0.9)
shows more tolerances in such conditions and thus more
places are discrovered. It should be noted that such kinds
of tolerance could make a discovered model unsound [1]
(e.g., the green/dashed block in the model), regardless,
we can refine this either manually or using advanced
techniques based on our requirements, and detailed
analysis in such aspect will be out the scope of this work.

5.2.2 Efficiency

Runtime. We conducted our tests using different input
parameters (t1, t2) and Figure 6 shows the detailed run-
time of each algorithm with different input parameters
over the two logs. It can be seen that: (1) The DFG
discovery, i.e., Job 1, can be done quickly and it takes
only seconds for both the logs. (2) Using filters, for Log
1, 1f -HMD algorithm is faster than HMD, and 2f -HMD
always performs the best for different input parameters.
Regardless, for Log 2, all the algorithms perform nearly
the same. As we will explain later, the reason is that the
workload of Log 2 is comparably small for underlying
systems. Furthermore, for Log 1, the performance advan-
tage of our 2f -HMD algorithms becomes more obvious
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(t1, t2) (0.957, 0.8) (0.909, 0.9) (0, 1)
Alg. Job1 Job2 Rt. Job1 Job2 Rt. Job1 Job2 Rt.

2f 5 192 197 6 156 162 5 6 11
1f 5 270 275 6 270 276 6 270 276

HMD 6 294 300 6 294 300 5 288 293

(a) runtime over Log 1 (sec)

(0.385, 0.8) (0.217, 0.9) (0, 1)
Job1 Job2 Rt. Job1 Job2 Rt. Job1 Job2 Rt.

5 7 12 5 9 14 5 9 14
5 8 13 5 8 13 5 8 13
5 8 13 5 7 12 5 7 12

(b) runtime over Log 2 (sec)

Fig. 6: Runtime of each algorithm over different logs with different input parameters in safe conditions (32 cores)

(t1, t2) (0.957, 0.8) (0.909, 0.9) (0, 1)
Rule 2f 1f HMD 2f 1f HMD 2f 1f HMD

0 5967 5967 5967 5967 5967 5967 5967 5967 5967
1 5173 / / 4819 / / 5 / /
2 39 39 / 25 25 / 5 5 /
3 20 20 20 13 13 13 4 4 4

(a) number of candidates for Log 1

(0.385, 0.8) (0.217, 0.9) (0, 1)
2f 1f HMD 2f 1f HMD 2f 1f HMD
57 57 57 57 57 57 57 57 57
28 / / 17 / / 1 / /
7 7 / 3 3 / 1 1 /
7 7 7 3 3 3 1 1 1

(b) number of candidates for Log 2

Fig. 7: Detailed number of candidates for each algorithm with different input sets of parameters (32 cores)

(t1, t2) (0.05, 0.9) (0.1, 0.9) (0.2, 0.9) (0.5, 0.9) (0.909, 0.9)
0 5967 5967 5967 5967 5967

Rule 1 293 508 896 1936 4819
Rule 2 22 25 25 25 25
Rule 3 11 13 13 13 13

time (sec) 16 17 20 41 162

(a) detailed executions for Log 1

(0.01, 0.9) (0.05, 0.9) (0.1, 0.9) (0.2, 0.9) (0.217, 0.9)
57 57 57 57 57
1 7 10 15 17
1 3 3 3 3
1 3 3 3 3

14 14 12 13 14

(b) detailed executions for Log 2

Fig. 8: Number of candidates and the runtime of each execution for 2f -HMD in unsafe conditions (32 cores)

with increasing values for t2. These can be explained
by the fact that the job of DFG discovery is simple. In
the meantime, the computing workload can be efficiently
reduced using the two filters, and the filtering power
becomes stronger with the increase of t2. Specifically,
when t2 is set to it possible maximum value (i.e., 1),
the job 2 of the 2f -HMD algorithm can be done in
seconds and much faster than other two approaches. In
contrast, we can see that the runtime 1f -HMD is nearly
constant with varying the values of input parameters, the
possible reason is that the number of input candidates
is huge and the computing cost over Rule 2 dominates
the runtime of the approach.

Power of filters. We recorded the detailed number of can-
didates in each phase of all the three algorithms in our
executions, and the results are given in Figure 7. There,
for Log 1, the results demonstrate that large number of
place candidates (i.e., workloads) can be pruned using
filters for both the logs. For example, with parameters
0.957 and 0.8, the number can be reduced to 39 using two
filters, compared to the 5967 in HMD. Moreover, when
increasing the values of the parameters, the numbers can
be further reduced (e.g., to 5 using 2f -HMD for final
case), and this brings in great performance improvement
for the Log 1 as we have observed in Figure 6(a). Similar
to Log 1, we can see that the number of candidates
is also reduced using filters for Log 2. Regardless, this
improvement is not obvious, as the original number
of input candidates is small (i.e., 57). That is also the
reason why the runtime is nearly the same for the three
algorithms with different input parameters as shown in
Figure 6(b).

Safe vs. unsafe. To avoid over-filtering, we have set t1 to a

safe value (i.e., the worst case) in above tests, according
to our previous theoretical analysis. To examine the
impact of t1, in terms of correctness of outputs and
performance of the 2f -HMD algorithm, we vary its value
in some unsafe conditions and report the results in
Figure 8. There, we fix the value of t2 to 0.9, and it
can be seen that in a wide range (e.g., 0.1 vs. 0.909
for Log 1) of t1, the number of discovered places is
the same (e.g., 13 after Rule 3 for Log 1) for each case.
Not only is the number of places the same, the set of
places are the same. This implies that aggressive filtering
has no effect on the outcome although this approach is
theoretically unsafe. In the meantime, with decreasing
the value of t1, we can also observe that the runtime is
decreasing obviously for Log 1. The reason is that the
power of the first filter is becoming stronger, which can
be observed on the changes of the number of candidates
in Figure 8(a). In comparison, the runtime over Log 2
does not change, due to the original workload is small
as we have analyzed. Additionally, we see that over-
filtering could indeed happen if t1 is set to a very small
value (e.g., 0.05 for Log 1).

5.2.3 Scalability
We tested the scalability of the 2f -HMD algorithm by
varying both the size of input logs and the number
of execution cores. Since we are targeting large and
complex logs, we only report the results over the datasets
from Log 1. For generality, we fix the value of t2 to
0.9 and select the cases with t1 equals to 0.1 and 0.5
respectively (both are proved to be safe on the basis of
our above results).

Number of events. To evaluate our approach for larger
logs, we first fix the number of workers to 8 (32 cores)
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Fig. 9: The scalability of 2f -HMD by varying the size of input logs and the number of execution cores with different
input sets of parameters over datasets from Log 1.

and increase the size of Log 1 by duplicating its traces,
from 31,509 (1.2 million events) to 252,072 (9.6 million
events). As shown in Figure 9(a), we can see that the run-
time is increasing with increasing the number of events
for both the configurations, and the trend for the case
with t1 = 0.5 is more obviously than t1 = 0.1. Moreover,
both cases achieve superlinear performance. The reason
is that numbers of candidates are highly reduced in both
cases, which makes the workload relatively small for
the underlying systems though the number of events is
increased.

Number of cores. As shown in Figure 9(b), we fix the
number of events to 4.8 millions and double the number
of cores from 8 cores to 64 cores (16 nodes) for the
conditions with t1 equals to 0.1 and 0.5. It can be seen the
runtime of 2f -HMD algorithm decreases with increasing
the number of cores in both the cases. Regardless, the
runtime does not behave very well for the case with
t1 = 0.1, and also for the case t2 = 0.5 when increasing
the number of cores from 32 to 64. We believe that the
reason is the computing workload is comparably small
for the underlying platform. To prove this, we increase
the workloads for the case with t1 = 0.1 by increasing the
number of traces to 2.5 millions (with 96 million events)
and run the tests again. From Figure 9(c), it can be seen
that the runtime scales very well, although the workload
is still relatively small when the number of cores reaches
64. Specifically, it can be seen that 2f -HMD can discover
the hybrid model from about 100 million events, in about
1 minute using 64 cores (16 nodes).

6 RELATED WORK

Process discovery is one of the most challenging process
mining tasks. State-of-the-art techniques can already deal
with logs where each process instance is recorded as a
case with ordered events and that each event is related
to exactly one case by a case identifier. Examples of
algorithms that learn process models based on event
data include α-miner [19], Heuristic Miner [28], ILP
Miner [29] and Inductive Miner [5]. Most of these meth-
ods describe in scientific literature focus on discovering
process models having formal semantics. This is in stark

constraint with most of the commercial tools which
discover informal models, not having clear semantics.
The reason is that Petri nets (and the like) are perceived
as complex and also force people to be very explicit
about the ordering of activities. However, when there
is infrequent behavior and splits and joins are clear cut,
it does not make any sense to straitjacket reality in a
very precise model. In fact, none of the 20+ commercial
tools is explicit about the type of splits and joins. In
comparison to this, we introduce an efficient way to
discovery hybrid models by adding formal semantics
to the informal models, which can be easily discovered
and widely used. The approach presented here is related
to the approach in [16] which also uses hybrid process
models (hybrid Petri nets). In this paper we focus on
distributing the discovery of such process models in a
cloud computing environment. Moreover, there are also
differences in the discovery approach and the notation
used.

With the growing of big data, large-scale event logs
start to challenge current process mining techniques [30].
The reason is that sampling technique could lead to
statistically valid results on mainstream behavior [31],
but would not lead to insights into the exceptional be-
havior, which is typically the goal of process mining [32].
Some commercial tools, such as Celonis exploit modern
database techniques to handle big event log. However, as
the amount of event log data continues to grow, such an
approach will be no longer feasible and it will be impos-
sible to process the entire data set on a single machine,
due to the hardware limitations (e.g., CPU and memory).
To handle this issue, we need to resort to distributed
and cloud-based computing platforms (see Chapter 12
in [1]). In fact, such platforms (or frameworks) such as
MapReduce and Spark have been used to support event
correlation discovery, i.e., to identify the events that are
part of the same case [33], [34]. Moreover, in the context
of process discovery, MapReduce has also been used
to implement the α-miner and the Flexible Heuristics
Miner [35], [36]. Although all these approaches have
shown that they can achieve obviously speedups in the
presence of big event log, different from them, we focus
on discovering hybrid process models in this work.
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We have implemented our approach on Spark (over
HDFS) and experimentally shown that the proposed
2f -HMD algorithm is efficient and scalable in a cloud
computing enviroment. We believe that the evaluation
conducted in this work and the described results are of
value to the community as a basis for understanding
the merits of the approach. Since our computing is con-
ducted on partitioned logs, our approach can be easily
extended in more complex computing environments,
such as that hybrid model discovery in multi-cloud (or
cross-orgnization) environments [37]. In such a case, to
efficiently use the available computing resources, we
can further divide the filter operations of 2f -HMD into
seperate jobs and apply advanced scheduling strategies
on them (e.g., [38]) to achieve the best possible perfor-
mance.

7 CONCLUSIONS

In this paper, we have introduced an efficient approach,
called f -HMD, to discover hybrid process models from
large event logs. We have described the detailed imple-
mentation of our approach in a cloud computing enviro-
ment (i.e., over Spark) and our experimental results have
demonstrated that the proposed 2f -HMD algorithm is
very efficient and scalable.

Our future work lies in extending our method with
more advanced techniques to get better hybrid models
(e.g., avoid unsound models to avoid the situation de-
picted in Figure 5). Moreover, we will employ parameter
tuning strategies in our implementation to select safe
filtering parameters for each individual candidate in a
dynamial way, and consequently to enhance the robust-
ness and efficiency of our prototype in production envi-
ronments. Finally, we plan to incorporate the proposed
approach in our prior event correlation system [34], to
develop a high-performance process discovery system
which can automatically discover hybrid process models
from homogeneous (and heterogeneous) event logs in
large-scale distributed cloud scenarios.
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