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Abstract—Although cloud computing is one of the promising
technologies for online business services, how to schedule real-
time cloud jobs with high QoS (quality of service) is still
challenging current techniques. With the advancing of machine
learning, Deep Reinforcement Learning (DRL) has demonstrated
its outstanding capability in dispatching time-sensitive tasks.
However, the reinforced rewards in DRL are typically unavailable
until the completion of the scheduling for all the jobs. Considering
the fact that the trajectory of jobs in cloud is always long,
current DRL-based solutions will meet challenges in finding
the trajectories with high rewards and thus would have issues
such as that the finally trained scheduling policy is suboptimal.
To improve the problem, in this work, we propose a more
advanced approach called AIRL, a deep adversarial imitation
reinforcement learning framework for scheduling time-sensitive
cloud jobs. Specifically, we focus on scheduling user requests in
a way to maximize job successful rate along with a significant
reduction on job response time. We present the detailed design
of our method and our experimental results demonstrate that
AIRL can generally outperform the existing cloud job scheduling
approaches including the DRL-based method in the presence of
different real-time workload and computing resource configura-
tions.

Index Terms—QoS, cloud computing, job scheduling, DRL,
adversarial imitation learning, real-time jobs.

I. INTRODUCTION

CLOUD computing is a model that enables users to
access computing services over the Internet, including

both hardware and software resources, from anywhere at any
time. Because of some specific characteristics, such as high-
performance, low-maintenance, elasticity and scalability, cloud
computing has been considered as one of the encouraging
technologies for modern society. Specifically, cloud computing
has been widely used for providing online business services
that more and more companies have been migrating their
applications to the cloud.

One of the fundamental mechanisms in cloud computing is
job scheduling, which aims to effectively dispatch computing
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tasks submitted by end-users to a resource pooling constitut-
ing of a lot of heterogeneous virtual machines (VMs) [1].
Since job scheduling affects not only system efficiency (e.g.,
resource utilization) but also user experience (e.g., QoS), it has
been seen as of paramount importance to the cloud ecosystem.
In fact, the scheduling problems in cloud computing can be
generally categorized into two layers: one is to allocate jobs
submitted by users to a set of available VM resources, and
the other is to make a VM in a suitable host to create or
migrate [2]. We focus on optimizing the former problem in
this work, because we are aiming to handle transactional
workloads, which occur commonly in today’s business world
(like e-commerce) that a company has rented a set of VMs
and would like to use the resources to their most potential to
improve QoS for online services.

The complexity of the job scheduling optimization problem
in cloud has shown to be NP-hard in many cases [3]. This
means that the problem solving time would be in exponential
time from a theoretical perspective. To get an approximate
optimal solution in an acceptable time, a large number of
job scheduling approaches have been proposed in the past
decades, such as customized heuristics [4] and metaheuristics
as well as their variations [5], [6]. However, due to the
computational overhead in optimization, almost all the ap-
proaches are designed specified for handling batch workloads,
which are typically operated in the background (e.g., process
huge volumes of data [7]) and are rarely time sensitive. In
comparison, the scheduling of real-time jobs like the order
processing in transactional workloads has been seldom studied.

Although we can use the most conventional methods such
as Random and Round-Robin to make real-time decisions for
incoming jobs in cloud, the approaches have shown to be
inefficient in processing complex transactional workloads [8].
With the advancing of machine learning technology, deep
learning (DL) starts to represent an effective solution to
tackle complex scheduling problems in different domains [9].
Moreover, among all the emerging DL technologies, Deep Re-
inforcement Learning (DRL), which can perform optimization
withtout any prior knowledge of a system, has demonstrated
its outstanding capability in handling scheduling problems in
cloud computing in recent two years [10]. Specifically, consid-
ering the dynamics of incoming jobs and the complex status
of a cloud system, it will be hard to use conventional cloud
job scheduling approaches to handle real-time incoming jobs
in an effective way. In comparison, a DRL-based intelligent
agent can learn effective scheduling strategies from training
and on that basis to dispatch cloud jobs in real-time based on
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the status of used instances.

To date, some works have tried to apply DRL for cloud
job scheduling [11]. Netherless, only quite limited works have
considered QoS in their scheduling. Generally, QoS measures
the collective effort of service performance and determines the
degree of satisfaction from users, e.g., users always expect
their requests to be answered immediately, which is critical
for cloud economics. Specifically, a high-QoS model can
reduce the risk of losing end-users in business and maximize
the potrntianal profits for a company [12]. Moreover, the
scheduling of real-time incoming cloud jobs can be modeled as
a typical Markov Decision Process [13], and the existing DRL-
based scheduling approaches have ignored the fact that the
training in DRL is actually based on maximizing the expected
cumulative reward. Namely, the reinforced rewards will be
unavailable until the completion of the scheduling for all the
jobs. Since the trajectory of jobs in cloud is always long,
the solutions will meet challenges in finding the trajectories
with high rewards and thus would have issues such as that the
finally trained scheduling policy is suboptimal.

To efficiently handle real-time jobs while keeping high QoS
for their execution in cloud, in this work, we propose AIRL,
a deep adversarial imitation reinforcement learning approach
for QoS-aware cloud job scheduling. Specifically, the imitation
learning is a widely used learning strategy in reinforcement
learning, and it enables an agent to learn through imitating the
expert trajectory. Moreover, to tackle delayed reward issues in
DRL, we adopt adversarial imitation learning in our training
to cache job trajectories with high rewards as experts and give
the DRL agent immediate directions to learn better policy.

In general, the main contributions of this paper can be
summarized as follows:

• We propose an advanced QoS-aware job scheduling
framework AIRL, which aims to maximize the successful
rate and minimize the average response time for time-
sensitive jobs in cloud.

• We introduce the optimization model of our scheduling
problem and present the details on how we can seamlessly
combined the adversarial imitation learning and deep
reinforcement learning together for cloud job scheduling.
Additionally, we also give the model training strategy we
have used in our implementations.

• We compare our approach with six real-time job schedul-
ing algorithms including the DRL-based method, and our
experimental results demonstrate that AIRL can generally
achieve better performance for the success rate and av-
erage response time for job execution in the presence of
different real-time workload and VM configurations.

The remainder of this paper is organized as follows. In
Section II, we discuss in detail about the related works. We
introduce the mathematical model for the studied QoS-aware
scheduling problem in Section III and present the details of
our AIRL approach in Section IV. We carry out extensive
experiments of our method in Section V and conclude this
paper in Section VI.

II. RELATED WORKS

The optimization of resource utilization and job execution
in cloud has been widely studied in the past decades [14], [15].
Generally, the relevant scheduling problems can be categorized
into two main types: one is a mapping between resources and
jobs which aims to allocate reasonable resources to required
jobs, and the other is a VM and host mapping such as creating
or migrating VMs over a set of hosts [1], [16]. In this work, we
focus on the former problem, i.e., job scheduling. Specifically,
cloud job scheduling affects not only the QoS for users (e.g.,
deadline, makespan, and cost [17], [18]) but also the economic
benefits of cloud service providers [19]. An improper schedul-
ing strategy can degrade the overall performance of a cloud
system and violate the QoS guarantees [20].

With the growing complexity of cloud jobs and service
requirements, getting an optimized plan of job scheduling
within a reasonable operational time is still quite chanllenging.
Up to now, various mathematical and statistical theories, such
as queuing theory [21], [22], control theory [23], [24] and
game theory [25], [26], have been applied to job scheduling in
cloud. Moreover, a trend of using metaheuristic algorithms as
well as their variations is also emerging rapidly (e.g., GA [27],
ACO [28], PSO [29] and WOA [30]) and used in solving
scheduling problems [31]. In the meantime, to cope with some
specified workloads such as DL training jobs, many advanced
systems and algorithms have been implemented for cloud
enviroments [32], [33], [34]. Although all the approaches have
demonstrated their strong capability on cloud job scheduling,
they are designed for handling batch jobs. Namely, they are
unable to process time-sensitive tasks, due to the significant
overhead on solving optimization problems. In comparison, in
this work, we focus on proposing a DRL-based method for
scheduling real-time jobs in cloud.

In dynamic and uncertain cloud environments, assigning
continuously jobs to suitable computing resources in real
time is actually very challenging. The main reasons is that
cloud systems always do not have any prior knowledge about
incoming jobs, such as arrival time and required resources.
Conventional real time scheduling strategies, such as FIFO,
Round-Robin, etc., can be used for online job scheduling.
However, they are not QoS guaranteed and could perform
poorly in many conditions (details see our evaluation in
Section V). In comparison, a DRL-based approach will be
able to learn how to make better decisions in future through
the interaction with changing environments during the process
of model training.

In fact, without requiring any prior knowledge of a sys-
tem, DRL has demonstrated its strong capabilty on making
decisions for complex problems in many domains [35]. The
typical examples include but not limited to network control in
IoT and resource management in edge computing [36], [37].
Currently, DRL has also been used in cloud computing, and
some works have shown that DRL can effectively improve
system energy efficiency, job runtime for jobs, QoS and job
success rates [10], [11], etc. However, one possible issue for all
the approaches is that they just use DRL in a straightforward
way and ignore that fact that the training process is actually
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Fig. 1: The logical view of a cloud job scheduling system [1].

based on maximizing the expected cumulative reward, which
are typically unavailable until the completion of the scheduling
for all jobs. In contrast to that, we focus on a more advanced
design for the reinforced rewards in DRL on the basis of
adversarial imitation learning [38], which is an important
learning strategy of reinforcement learning. Different from the
Q-learning-based approach or policy-gradient-based approach,
it enable that an agent to learn from imitating an expert agent
or expert trajectory [39]. Moreover, our experimental results
demonstrate that our method can indeed further improve the
scheduling performance, compared to a DRL-based scheduling
approach.

III. QOS-AWARE SCHEDULING

In this section, we briefly introduce the general system
architecture of job scheduling in cloud as well as the math-
ematical model for QoS-aware scheduling that we have used
in this work.

A. System Architecture

For a cloud system, various components such as job and
resource monitors are normally used to support job scheduling.
For the purpose of this work, we mainly consider users, job
queues, job scheduler and VMs in the system. Specifically,
similar to the work [1], we abstract our job scheduling system
following a two layer processing architecture as illustrated
in Fig. 1. Since we focus on real-time workloads in this
paper, without loss of generality, we assume that each job is
independent of each other. Moreover, with QoS in mind, the
process of the job scheduling in our system can be summarized
into the following four steps. (1) For each income job (i.e.,
user request), based on the detailed information of the job
(e.g., job type and QoS requirement) and the status of all
VMs, an optimized job-VM mapping will be generated by the
intelligent agent at the schedule/control layer. (2) Following
the mapping, the scheduler will forward the job to the allocated
VM at the job processing layer. (3) The job will be executed
if the computing resources of the assigned VM are available,
otherwise the job will wait in a job queue on the VM. (4)
After the execution, the returned results will be sent back to
the responsible user.

TABLE I: Table of notations

Notation Meaning

JID the id of a job
JAT the arrival time point of a job
JT job type (I/O or computing intensive)
JL job instruction length (the number of instructions)
JQ QoS requirement (expected completion time point)
JRT response time point of a job
JET execution time of a job
JWT waiting time of a job
VID the id of a VM
VT VM type (I/O or computing intensive)
VP VM processing speed (instructions per time unit)
VIT the idle time point of a VM (i.e., when the VM is free)

B. Scheduling Model

For cloud jobs, QoS may refer to many factors, such as
levels of performance, reliability, availability, etc. Similar to
some recent works [8], [11], we mainly focus on the response
time in this paper, which is considered as one of the most
critical indicators for user requests in real-time scenarios.
Specifically, for a submitted job, if the response time of the
job is smaller than the user’s expected time, we define that the
execution of the job is successful. Otherwise, we say that the
job fails on execution. On that basis, we give the mathematical
definitions of cloud jobs and resources as well as the execution
mechanism of jobs in our scheduling as follows. The meanings
of the used notations are given in Table I.

1) Workloads and Cloud Resources: We focus on how
to use DRL and adversarial imitation learning techniques to
optimize job scheduling in cloud. Based on the characteristics
of user requests, for the simplicity of our presentation, we
categorize the workloads in our study into two main types:
I/O intensive jobs and computing intensive jobs. Moreover,
we define each job as J = {JID, JAT , JT , JL, JQ}, where
JID is the job id, JAT is the job arrival time point, JT is the
job type, JL is the job length and JQ is the QoS requirement
of the job. For computing resources, similar as the workloads,
we consider two types of virtual machines in this paper, i.e.,
I/O intensive and computing intensive VMs. For a set of VMs,
each VM can be represented as V = {VID, VT , VP }, where
VID is the VM id, VT is the type and VP is the processing
speed of the VM.

2) Execution Mechanism: To capture the core mechanism
of job scheduling in cloud, we assume that each VM can only
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handle one job at any time point. Since a job will have to wait
for free resources if the assigned VM is busy, then the response
time of the job will be composed of two parts: waiting time
and execution time. In this case, for a job Ji arrives at time
JAT i with the QoS requirement JQi, if it is scheduled to be
executed on the j-th VM Vj , then its response time can be
formulated as:

JRT i = JET i + JWT i (1)

where JRT i is the response time, JET i is the execution time,
and JWT i is the waiting time for the job Ji. Specifically,
the execution time is the runtime of Vj to process Ji. It is
straightforward that the execution time of a job will be large
if the type of the job does not match the type of the allocated
VM. To model this case, we define JET i as:

JET i =
(f i(JT i == VT j) + 1)JLj

2VP j
(2)

Here, the f i is a function, the value of which is set to 1 if
the types of the job and assigned VM are the same, otherwise
the value will be 0. With this design, we can make sure that
when the type of a VM and a job does not match, the VM will
take more time to execute the job. Namely, we use this as a
penalty for assigning a job to an unmatched VM. Moreover, if
the idle time point of Vj is VIT j , then the waiting time JWT i

can be formulated as1:

JWT i = max(0, VIT j − JAT i) (3)

For the case that the job Ji is indeed assigned to Vj for the
processing, the idle time point of Vj for the newly coming
jobs will be updated as:

VIT j = max(0, VIT j − JAT i) + JAT i + JET i (4)

With the above four equations (or the status of the whole
scheduling system and job properties), we can then calculate
the response time for an incoming job at any time point.
Moreover, we can further know whether the execution of the
job is to be successful or not for a specified scheduling plan,
by comparing its response time with its expected time. From
this basis, to achieve high QoS in job scheduling, our main
target is to maximize the successful rate of execution for all
jobs, each of which could come at any time point. To this end,
we give the design of our AIRL in the following section.

IV. THE PROPOSED APPROACH – AIRL

In this section, we first give the preliminaries and the defini-
tion of the Markov Decision Process (MDP [13]) environment
for cloud job scheduling. Then, we introduce the detailed
design of our AIRL framework as well as the training strategy
for our model.

1Note that the idle time point represents the point when the VM can execute
the assigned job. Namely, the VM may be busy at the current time, and the
job will have to wait.

A. Preliminaries

MDP for Job Scheduling. The Markov Decision Process
for cloud job scheduling in our system can be modeled as
M = (S,A,P,R, γ), where S = {si} is the state space
which contains the working state of all virtual machines and
the information of the current job, and A = {ai} denotes the
action space, which consists of the action of the intelligent
agent at each step, i.e., assigning the current job to which
VM. Moreover, P = p(st+1|st, at) is the transition dynamics
which determines the transition probability of the next state
st+1 at the current state st with action at, and R is the reward
function that gives a reward when reaching a new state and γ
is the discount factor.

Obviously, in our model, the state transition matrix is
unknown to the agent. Moreover, for our QoS-aware schedul-
ing problem, QoS is used to represent the reward. Then,
we can use the trajectory (s0, a0, r0; s1, a1, r1; · · · ; sn, an, rn)
to denote the whole scheduling procedure. Additionally, the
update of each state can be formulated as p(st+1) =∑
at
p(st+1|st, at)p(at|st), in which at ∈ A, p(at|st) =

π(st, at), and π is the policy provided by the agent. In the
meantime, the final accumulated reward can be written as
R =

∑n
t=0 rtγ

t.
Deep Q-Learning. The implementation of our scheduling

is based on Deep Q-Learning, in which the Q-Learning [40] is
an off-policy reinforcement learning algorithm aiming to learn
a value function Q : S × A −→ R. The value represents the
long-term accumulated reward for a state and its corresponding
action. However, there are some limitations for Q-Learning on
handling complex jobs with a large state space or action space.
With the growing popularity of deep learning techniques,
deep Q-learning has been proposed to remedy the problem.
Generally, in a Deep Q-learning Network (DQN), a deep
neural network (DNN) is used to represent the value function
which can be written as Qφ(st, at) and φ is the parameters of
the DNN.

In DQN, the value function Qφ(st, at) is updated as
a regression problem by using the target value rt +
γmaxâ∈AQφtarget(st+1, â), where rt is the reward at t-th step,
γ is the discount factor and Qφtarget(st, at) is a target value
function. These two value functions are trained alternately that
Qφtarget(st, at) is fixed at first and Qφ(st, at) is updated by
a regression loss. After a fixed number of training steps, the
φtarget is updated by using φ. Typically, the regression loss for
Qφ(st, at) is minimized over the mini-batch of the past trajec-
tory (st, at, rt, st+1). The most common loss used to train the
DQN is the Mean Squared Error (MSE) loss, which can be
formulated as minφ

∑|B|
i=1(rti+γmaxâ∈AQφtarget(sti+1, â)−

Qφ(sti , ati))
2, where B is the training mini-batch and φtarget

is fixed when calculating the MSE loss.

B. Environment Design for DRL

Following the above introduction of MDP and deep Q-
learning, we give the environment design for our DRL-based
scheduling as follows.

State Space. The state space in our scheduling system
is defined as S = (Jc,VS), where Jc is the state of the
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current job to be scheduled. VS is the state of all VMs
VS = {V1, · · ·Vk}, where Vi is the i-th virtual machine, and
k is the number of virtual machines, and the MDP will be
terminated when all jobs are executed.

Action Space. Our action space only contains one type of
action assigning the current job to a virtual machine. In this
case, the length of our action space is equal to the number
of virtual machines, i.e., |A| = k. Here, we define the action
space as A = {ai, i = 1 · · · v}, where ai represents that the
current job is assigned to the i-th virtual machine.

Transition Dynamics. Suppose that the current state is
st = (Jt,VS), then the state of virtual machines will be
updated when allocating the t-th job. After that, we can start
the scheduling for the (t+ 1)-th job and get the next state of
the system. If there are more than one job at the specified time
period, our agent will handle them in a FIFO manner.

Reward Function. To achieve high QoS for job scheduling,
our main target is to maximize the successful rate of job
execution in general. In the meantime, for each job, the smaller
the response time is, the better the service will be. It should
be noted, in many scenarios, a user will terminate a job if the
response time does not meet her/his requirement. Therefore, in
our scheduling, we expect that the most possible jobs can be
executed in a way to meet deadline requirements from users,
and the DRL agent will not receive any reward for a job if the
deadline of the job is exceeded. On that basis, we also expect
that each job with less response time as possible to further
improve the QoS. Therefore, we can make sure that, the less
response time for a job execution, the higher reward the DRL
agent will receive. From that basis, we define the reward for
a job Ji as:

r =


JLi

JRT iVP j
, JRT i <= JQ

0, JRT i > JQ

(5)

where JLi is the instruction length, JET i is the execution
time, and JQ is the QoS requirement of the job. With such
a reward function design, the DRL agent is encouraged to
take actions to improve the QoS (i.e., the success rate and the
response time). This is also the reason why we say that our
job scheduling is QoS-aware.

C. AIRL for QoS-aware Job Scheduling

Different from existing works on simply using DQN, we
have adopted the more advanced Dueling-DQN [41] for job
scheduling. Moreover, to learn scheduling policy in a more
effective way during the training of our DRL model, we have
seamlessly integrated the adversarial imitation learning in our
DRL based approach. The general architecture of our AIRL
framework is illustrated in Fig. 2 with the details of the used
Dueling-DQN being presented in Fig. 3. There, the Dueling-
DQN takes the virtual machines and the arriving job as the
input state, and the state will be updated when the agent makes
a decision on the scheduling. In the meantime, the agent will
receive a reward upon the decision. Followed by that, the
expert policy will also make a decision for the current state,
and the discriminator will calculate an imitation loss to direct

the Dueling-DQN. This process will be repeated during the
training, and the agent will be able to learn learn how to
make better decisions on the scheduling for incoming jobs
in future. In the following, we present the detailed design of
the Dueling-DQN and adversarial imitation learning for our
QoS-aware job scheduling problem.

1) Dueling-DQN for Job Scheduling: Generally, cloud job
scheduling is more challenging than many other problems
when using reinforcement learning techniques. The main rea-
son is that cloud job are always complex. Since Dueling-
DQN has shown to be more powerful on evaluating complex
states than DQN [41], we have used the Dueling-DQN as our
scheduling agent’s model. In a normal DQN, there are only
one state-action value function Q(st, at) used to estimate the
return of current state-action pair. In comparison, the state-
action value function in Dueling-DQN is divided into two
parts, one is the state value function V (st), and the other one
is the action advantage function A(st, at). The relationship
between these three functions can be formulated as:

Q(st, at) = V (st) +A(st, at) (6)

Here, the state value function is used to estimate the value
of the current state, and the action advantage function is
to estimate the advantages of each action. With these two
different functions, the agent can learn which state is valuable
and which action is valuable under a state. For our job
scheduling problem, when the agent goes into a bad state, the
choice of action will have only a little effect on the final return.
However, similar to a DRL-based approach, the Dueling-DQN
could still meet issues in its learning process, such as that it is
unable to alleviate the delayed reward for long trajectory jobs.
To improve this problem, we further employ the adversarial
imitation learning in our scheduling.

2) Adversarial Imitation Learning for Job Scheduling:
Inspired by Generative Adversarial Network (GAN) [42], we
introduce the adversarial imitation learning [43] [38] [44] for
cloud job scheduling. As illustrated in Fig. 2, the main idea
is that we use a discriminating signal (discriminator) to give
an immediate direction to the agent. Specifically, we use the
adversarial imitation loss as a surrogate reward, which can be
densely obtained during behavior distribution fitting. In this
way, we can help the agent to make better decisions in the
presence of long trajectories. In detail, if there is an expert
policy πE , then the discriminating signal delivered to the agent
will teach the agent how its action like the expert policy. In
this process, the discriminating signal is formulated as:

min
φ
max
θ

(Eπφ(logDθ(st, at))+EπE log(1−Dθ(st, at))) (7)

where D is the discriminating signal, πφ is the policy of our
agent, a dueling-DQN, πE is the expert policy that our agent
tend to imitate, φ is the parameters of the dueling-DQN and
θ is the parameters of the discriminator D.

In our model, we have used the multilayer perceptron
(MLP) as the expert policy EπE , the input of which is state
and the output is a probability distribution over all actions.
The policy EπE is pre-trained by a directing policy, and the
probability distribution represents the expert policy’s decision.
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Fig. 2: The general architecture of the proposed AIRL framework for cloud job scheduling.

Fig. 3: The details of the Dueling-DQN used in AIRL frame-
work.

Mathematically, the discriminating signal is a function which
can provide immediate directions to the agent. In GAN, the
discriminating function is a neural network. In our approach,
we let the imitation loss follow the Maximum Causal Entropy
theory [45] and choose the Jensen-Shannon divergence as the
discriminating function, which is defined as:

DJS = JS(AπE ||Aπφ) (8)

where AπE is the action probability distribution of the expert
policy and Aπφ is the Q value for all actions calculated by
the agent. DJS is the Jensen-Shannon divergence and it can
be calculated as:

JS(AπE ||Aπφ) =
1

2
KL(AπE ||

AπE +Aπφ
2

)

+
1

2
KL(Aπφ ||

AπE +Aπφ
2

)

(9)

where KL is the Kullback-Leibler Divergence. In this case,
the optimization of imitation loss can be written as:

min
φ

(EπEEπφ(DJS(AπE ||Aπφ)) (10)

To further improve the performance of the adversarial
learning, we let the expert policy and the DQN train jointly
in an adversarial way after some iterations. Therefore, the
imitation loss can be represented by:

min
φ

(EπEEπφ(DJS(AπE ||Aπφ)), iter < Ta

min
φ
max
β

(EπEβEπφ(DJS(AπE ||Aπφ)), iter >= Ta
(11)

where β is the parameters of the expert policy, iter is the
current iteration and Ta is the iteration that starts the joint
train between EπE and Eπφ .

3) Model Training Strategy: The training procedure of our
model can be divided into two parts. The first part is the pre-
train of the expert policy πEβ , and the second part is the
training of Dueling-DQN πφ as well as the joint adversarial
training between πEβ and πφ.

As presented in in Algorithm 1, for the pre-train of πEβ ,
we first sample a set of job trajectories by using the directing
policy. Then, the trajectories are used to train the expert policy
πEβ . For the second part, we first define the loss to train our
model. Our loss function contains two parts: (1) the first part
is the imitation loss, which helps the Dueling-DQN imitate
expert policy’s action; and (2) the second part is the MSE
loss that used to train the Dueling-DQN. In this process, the
imitation loss is defined as:

LIMI = DJS(Aπφ ||AπE ) (12)
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Algorithm 1 Pre-train the Expert Policy
Require: Directing Policy: P , Expert Policy: πEβ , Trajectory Sam-

ple Function: F , Iterations: T .
1: for T Iterations do
2: Sample Training Trajectory: Bp = F(P)
3: for (st, at, rt, st+1) in Bp do
4: aE = πEβ (St)
5: Lp = KL(aE , at)
6: Update the parameters β with Lp
7: end for
8: end for

Algorithm 2 Training Strategy
Require: Expert Policy: πEβ , Dueling-DQN Policy: πφ, Target

Dueling-DQN Policy: πφtarget , Reply Buffer: R, Greedy Pa-
rameter: η, Job Queue: J , Virtual Machine set: VM, Epochs:
E, Target Update Interval It, Start Learn Iteration Is, Learning
frequency f , Adversarial Training Iteration IA, trade off weight
λ.

1: for E Epochs do
2: for i in length(J ) do
3: Load the i-th job ji
4: With probability η randomly select a action
5: Otherwise ai = argmaxaπφ(concate(ji,VM), a)
6: Update VM and calculate the reward ri
7: Append (si, ai, ri, si+1) to B
8: if i >= Is and i ≡ f mod 0 then
9: Sample a mini-batch B from R

10: for (st, at, rt, st+1)inB do
11: Calculate the MSE Loss LMSE

12: end for
13: Sample a mini-batch B from R
14: for (st, at, rt, st+1)inB do
15: Calculate the imitation learning loss LIMI

16: end for
17: Update φ with LMSE + λLIMI

18: if i >= IA then
19: Update β with −λLIMI

20: end if
21: if i ≡ It mod 0 then
22: φtarget ← φ
23: end if
24: end if
25: end for
26: end for

In the meantime, the MSE loss can be written as:

1

2
(rt + γmaxâ∈AQφtarget(st+1, â)−Qφ(st, at))2 (13)

where (st, at, rt, st+1) is the trajectory sampled from the reply
buffer and γ is the discount factor. With the loss functions,
we can then train our model following the steps as described
in Algorithm 2. For the whole training process, we first pre-
train the expert policy through Algorithm 1. After getting a
pretrained expert policy, we then train the expert policy and
the dueling-DQN policy in an adversarial manner according
to Algorithm 2.

V. EVALUATION

In this section, we compare the performance of our approach
with existing scheduling methods using different job workload
and VM configurations.

A. Experiment Setup

In our experiment, we have set the number of VMs to 10 and
the number of jobs to 8000. To simulate the real transactional
workloads, similar to many other works [46], the arrival time
of jobs is generated by a Poisson Distribution and the mean
arrival rate is selected from {10, 15, 20, 25, 30}. Moreover,
the length of each job is generated by a Normal Distribution,
the mean value and variance of job’s length is set to 300 and
20 respectively. As there are two types of jobs in this study,
we set the proportion of the I/O intensive jobs to a value
selected form {0.1, 0.3, 0.5, 0.7, 0.9}. Similarly, the value of
the proportion for the High-I/O VMs is selected from {0.1,
0.3, 0.5, 0.7, 0.9}.

In our evaluation, we have chosen 6 methods as the base-
lines to our approach, including Random scheduling, Round
Robin algorithm, Earliest algorithm, Suitable algorithm, Sen-
sible algorithm [8] and DQN-based approach [11]. Among
them, the Suitable algorithm will first try to select a set of
VMs, the type of which matches the type of a given job, and
then choose the VM with the earliest idle time point to execute
the job. Moreover, we have used three metrics to evaluate the
performance of our approach. The first metric is the Success
Rate (SR), which is used to measure how many job are
processed successfully, and a job is processed successfully
if and only if its response time is lower than the pre-defined
QoS requirement. The second metric is the Average Response
Time (ART), which is used to measure the average time on
processing each job. The third metric is the Utilization Rate
(UR), which is used to measure the utilization rate of each
VM. It should be noted that the first two metrics are related
to our optimization target on QoS. We have used UR because
we want to check whether the cost to achieve a high QoS is
high or not for our method.

For the detailed parameters used in the evalution, we use
two simple MLP layers as the Dueling-DQN and the expert
policy in AIRL. The dimension of hidden layer is set to 20 for
both DQN and expert policy. The learning rate for Dueling-
DQN is set to 0.005. The trade off parameter σ is set to 0.05.
The greedy parameter is set to 0.8, the start learn iteration
is set to 500, and the target update interval is set to 1200
iterations. The reply buffer size is set to 500 and the mini-
batch size is set to 32. The trade off weight parameter λ is
set to 0.01. We use ADAM optimizer [47] for training and
implement our approach on PyTorch2. The source code we
have used in this section is available at https://github.com/
huang1997214/SAIRL.

B. Comparison of Scheduling Performance

Varying mean arrival rates of jobs. We first evaluate the
performance of our approach under the condition that jobs
arrive with different rates. In this test, the proportions of job
type and the VM type are both set to 0.5, and the mean
arrival rate of jobs is varied from 10 to 30. The experimental
results about SR, ART and UR are presented in Fig. 4. From
the SR reported in Fig. 4(a), we can see that our AIRL can

2https://pytorch.org/

https://github.com/huang1997214/SAIRL
https://github.com/huang1997214/SAIRL
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(a) Success Rate.

(b) Utilization Rate.

(c) Average Response Time.

Fig. 4: Performance comparison by varying the mean arrival
rate of jobs.

significantly outperform the conventional approaches such as
Round-Robin and Earliest. Moreover, we can achieve around
5%−10% higher SR, compared to the DQN method. Although
the Suitable method performs the best, the SR of AIRL is
still very close to the policy. This kind of characteristics is
also applied to the results presented in Fig. 4(b) and Fig. 4(c)
respectively. Specifically, AIRL and Suitable perform nearly
the same on UR and ART, and both are much better than
other scheduling methods. From all the results above, we
can find that our AIRL can generally outperform the existing
approaches on scheduling real-time jobs, in the case that the
distribution of jobs and VMs is balanced.

Varying job type proportions. To evaluate the performance
of our approach in the presence of different proportions of job

(a) Success Rate.

(b) Utilization Rate.

(c) Average Response Time.

Fig. 5: Performance comparison by varying the proportion of
job types.

types, we vary the job type proportion from 0.1 to 0.9, and
the value 0.1 means that there are 10% of all jobs are I/O
sensitive while 0.9 represents that 90% of the jobs are I/O
sensitive. In this process, we fix the job’s mean arrival rate to
25 and the VM type proportion to 0.5. As shown in Fig. 5(a),
the SR of our AIRL performs is generally higher than other
approaches including DQN. Specifically, it performs much
better than all other algorithms when the job type proportion
is 0.1 and 0.9. When the proportion is set to 0.3, 0.5 and
0.7, our approach performs slightly worse than the Suitable
policy. However, the performance difference is actually not
obvious. Moreover, if we consider the results in general, we
can see that the performance of our approach is actually much
more robust than Suitable, which can be also observed from
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(a) Success Rate.

(b) Utilization Rate.

(c) Average Response Time.

Fig. 6: Performance comparison by varying VM type propor-
tions.

the results on ART as reported in Fig. 5(c). From Fig. 5(b),
we can observe that the UR of our method is higher than
Suitable. Regardless, our main focus is to improve the QoS
of job scheduling (i.e., SR and ART) in this work, and our
UR is still much lower than the conventional approaches. To
conclude, when the job type distribution is unbalanced (e.g.,
for the cases with 0.1 and 0.9), our AIRL can outperform
other baselines significantly. Moreover, when the distributed
is balanced, Suitable will be a better solution, compared to
AIRL. However, it should be noted that their performance
difference is quite small. Moreover, a balanced distribution is
actually rare in a highly dynamic cloud environment. In such
scenarios, our AIRL will be the best choice for a scheduling
system, as it can always achieve a high QoS for job scheduling.

Varying VM type proportions. Similar to the above
experiment, we also evaluate our method by varying the VM
type proportions from 0.1 to 0.9. Here, the value 0.1 means
that only 10% VMs are High-I/O VMs while others are High-
Computing VMs. As shown in Fig. 6, our AIRL can still
generally outperform other methods including DQN on SR,
UR and ART. Specifically, when the VM type proportion is
set to 0.7 and 0.9, our method can achieve the highest SR.
In addition to that, AIRL performs the best on the average
response time when VM type proportion is set to 0.3, 0.5 and
0.7. Through all these results, we can see that our AIRL is
robust to the VM type proportions. It means that AIRL can
always provide a good scheduling scheme for incoming jobs,
no matter what the configuration of underlying VMs is.

VI. CONCLUSION

Although the emerging DRL has been used to optimize
job scheduling in cloud, the final trained model could be
still suboptimal, due to the fact that cloud job trajectories are
always long and a DRL agent can only get the accumulated
reward when all the jobs are executed. To further improve the
learning effectiveness of current DRL-based scheduling, we
propose a more advanced framework for cloud job scheduling
called AIRL. Specifically, AIRL can cache job trajectories
with high rewards as experts and give the DRL agent an im-
mediate direction signal during the training process. We have
presented the detailed design of AIRL and also compared its
performance on QoS with many other scheduling algorithms.
Our experimental results have demonstrated that AIRL can
generally outperform existing approaches in the presence of
different real-time workload and VM configurations.

For the future work, we will mainly focus on extending the
proposed scheduling model with some more advanced features
for cloud jobs. For example, we will try to use our approach
to handle cloud workflows [48], the jobs in which are not
independent from each other and each job could have its own
resource requirements. In the meantime, we also plan to apply
our method in more complex cloud computing environments
such as that the VM resources are dynamically provisioned.
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