个人简介

程龙,博士,现为华北电力大学控制与计算机工程学院教授、博士生导师。他之前是爱尔兰国家数据分析研究中心访问教授、爱尔兰都柏林城市大学助理教授、欧盟玛丽居里学者。主要研究方向是分布式计算和深度强化学习。曾在华为德国,IBM都柏林研究院工作过,并且在德国德累斯顿工业大学和荷兰埃因霍温理工大学从事过博士后研究, 于2018年获得欧盟资助个人科研最高奖项之一玛丽居里个人基金,并入选2023、2024年斯坦福全球前2%顶尖科学家榜单。

程教授在并行分布式计算的权威期刊与会议比如TPDS、TC、TSC、HPCA、ASPLOS上发表120余篇文章,是IPDPS、ICPP、CCGrid和CLUSTER等知名国际会议的程序委员会成员。他于2007年本科毕业于哈尔滨工业大学,2010年硕士毕业于德国杜伊斯堡-艾森大学,并于2014年获得爱尔兰国立大学-梅努斯的博士学位。目前是IEEE高级会员,IEEE Transactions on Consumer Electronics编委,SCI期刊Journal of Cloud Computing副主编(Chair),IEEE TCE、FGCS、Information Fusion、ACM TAAS等权威期刊客座主编。

部分最新文章

  1. L. Zhang, H. Wang, L. Cheng, F. Fang. Tighter regulation is needed for AI companions, Nature 642, 2025.

  2. 徐颖,王梦迪,程龙,刘炼,赵世新,张磊,王颖. Pipe-RLHF: 计算模式感知的RLHF 并行加速框架, 计算机研究与发展, 2025(CCF-A,期刊封面文章

  3. L. Liu, L. Cheng, H. Ren, Z. Xu, Y. Pan, M. Wang, X. Li, Y. Han, Y. Wang. COMET: Towards practical W4A4KV4 LLMs serving. Proc. ACM International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2025 (计算机体系结构CCF-A,同期英国仅3篇接收文章)

  4. L. Cheng, H. He, Y. Gu, Q. Liu, Z. Zhao, F. Fang. MARS: Multi-Agent Deep Reinforcement Learning for Real-Time Workflow Scheduling in Hybrid Clouds with Privacy Protection. Proc. 30th IEEE International Conference on Parallel and Distributed Systems (ICPADS), 2024 (会议唯一最佳论文奖)

  5. Q. Chen, F. He, G. Wang, X. Bai, L. Cheng, X. Ning. Dual Guidance Enabled Fuzzy Inference for Enhanced Fine-Grained Recognition, IEEE Transactions on Fuzzy Systems, 2024

  6. S. Dai, S. Li, H. Tang, X. Ning, F. Fang, Y. Fu, Q. Wang, L. Cheng. MARP: A Cooperative Multi-Agent DRL System for Connected Autonomous Vehicle Platooning, IEEE Internet of Things Journal, 2024

  7. Q. Liu, Y. Huang, C. Jin, X. Zhou, Y. Mao, C. Catal, L. Cheng. Privacy and Integrity Protection for IoT Multimodal Data using Machine Learning and Blockchain, ACM Transactions on Multimedia Computing, Communications, and Applications, 2024

  8. X. Chen, Q. Yu, S. Dai, P. Sun, H. Tang, L. Cheng. Deep Reinforcement Learning for Efficient IoT Data Compression in Smart Railroad Management, IEEE Internet of Things Journal, 2024

  9. S. Li, J. Li, Y. Liang, H. Zhang, S. Wu, S. Wang, L. Cheng. TD-SAS: A Trust-Aware and Decentralized Speed Advisory System for Energy-Efficient Autonomous Vehicle Platoons, IEEE Transactions on Intelligent Vehicles, 2023

  10. C. Liu, Y. Wang, L. Wen, J. Cheng, L. Cheng, Q. Zeng. Discovering Hierarchical Multi-instance Business Processes from Event Logs, IEEE Transactions on Services Computing, 2023 (CCF-A)

  11. L. Cheng, Yue Wang, F. Cheng, C. Liu, Z. Zhao, Ying Wang. A Deep Reinforcement Learning-based Preemptive Approach for Cost-aware Cloud Job Scheduling, IEEE Transactions on Sustainable Computing, 2023

  12. J. Guo, L. Cheng, S. Wang. CoTV: Cooperative Control for Traffic Light Signals and Connected Autonomous Vehicles using Deep Reinforcement Learning, IEEE Transactions on Intelligent Transportation Systems, 2023

  13. L. Cheng, Y. Wang, R. Jhaveri, Q. Wang, Y. Mao. Towards Network-aware Query Execution Systems in Large Datacenters, IEEE Transactions on Network and Service Management, 2023

  14. H. Huang, X. Xue, C. Liu, Y. Wang, T. Luo, L. Cheng, H. Li, X. Li. Statistical Modeling of Soft Error Influence on Neural Networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2023 (计算机体系结构CCF-A)

  15. Y. Xu, L. Cheng, X. Cai, X. Ma, W. Chen, L. Zhang. Y. Wang. Efficient Supernet Training Using Path Parallelism. Proc. 29th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2023), Montreal, Canada, 2023 (计算机体系结构CCF-A)

  16. S. Li, J. Li, J. Pei, S. Wu, S. Wang, L. Cheng. Eco-CSAS: A Safe and Eco-friendly Speed Advisory System for Autonomous Vehicle Platoon using Consortium Blockchain, IEEE Transactions on Intelligent Transportation Systems, 2022

  17. Y. Mao, V. Sharma, W. Zheng, L. Cheng, Q. Guan, A. Li. Elastic Resource Management for Deep Learning Applications in a Container Cluster. IEEE Transactions on Cloud Computing, 2022

  18. J. Li, S. Li, L. Cheng, Q. Liu, J. Pei, S. Wang. BSAS: A Blockchain-based Trustworthy and Privacy-Preserving Speed Advisory System. IEEE Transactions on Vehicular Technology, 2022

  19. C. Liu, H. Li, S. Zhang, L. Cheng, Q. Zeng. Cross-Department Collaborative Healthcare Process Model Discovery from Event Logs. IEEE Transactions on Automation Science and Engineering, 2022

  20. Y. Mao, W. Yan, Y. Song, Y. Zeng, M. Chen, L. Cheng, Q. Liu. Differentiate Quality of Experience Scheduling for Deep Learning Inferences with Docker Containers in the Cloud. IEEE Transactions on Cloud Computing, 2022

  21. Q. Liu, T. Xia, L. Cheng, M. Eijk, T. Ozcelebi, Y. Mao. Deep Reinforcement Learning for Load-Balancing Aware Network Control in IoT Edge Systems. IEEE Transactions on Parallel and Distributed Systems, 2022 (计算机体系结构CCF-A)

  22. C. Liu, L. Cheng, Q. Zeng, L. Wen. Formal Modeling and Discovery of Hierarchical Business Processes: A Petri Net based Approach. IEEE Transactions on Systems, Man and Cybernetics: Systems, 2022

部分主持项目

  1. 中车工业研究院项目:行车状态多参数自适应控制仿真测试与验证。2023,30万元,项目负责人。

  2. 国家电网科技项目:支撑分布式储能网络化运营关键技术研究。2021-2024,500万元,课题负责人。

  3. 国家重点研发计划:保障冬奥赛事网络和系统不间断运行的XX关键技术研究与应用。2021-2022,1000万元,子课题负责人。

  4. 欧盟H2020玛丽居里项目:大型分布式系统中网络感知的数据查询优化。2018-2019,20万欧元,项目负责人。

外校主要合作者